
IEEE INTERNET COMPUTING 1089-7801/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society JULY • AUGUST 2006 55

W
eb

 S
er

vi
ce

s

Boualem Benatallah
and Hamid Reza
Motahari Nezhad
University of New South Wales

Fabio Casati
Hewlett-Packard Labs

Farouk Toumani
and Julien Ponge
University Blaise Pascal, France

Service Mosaic
A Model-Driven Framework
for Web Services Life-Cycle Management
Although Web services provide abstractions for simplifying integration at lower
levels of the interaction stacks, they don’t yet help simplify integration at higher
abstraction levels such as business-level interaction protocols. Using a model-
driven framework for Web services life-cycle management, the authors help
facilitate the scalable development and maintenance of service-oriented
applications by analyzing and managing Web service business protocols. Instead
of using simple black and white measures,they identify different classes of protocol
compatibility and replaceability.They implemented this framework in a prototype
platform called Service Mosaic.

Web services are becoming the
technology of choice for applica-
tion integration. The main bene-

fits are support for loosely coupled and
decentralized interactions and standard-
ization, which helps reduce the costs of
application integration. To a large extent,
these costs result from interacting entities
having different interfaces, speaking dif-
ferent communication protocols, and
supporting different data formats and
interaction models.

Although Web services provide
abstractions to simplify integration at
lower levels of the interaction stacks (such
as data syntax and communication proto-
cols),1,2 where researchers have already
identified and even solved many issues,
they don’t yet help simplify integration at
higher abstraction levels (such as data or
message types and business-level interac-
tion protocols). Having loosely coupled

interactions implies that services aren’t
designed to be interoperable with a partic-
ular client (as traditional application inte-
gration often assumes). At development
time, designers might not even know the
type and number of clients that will access
the service. Even if services speak the same
low-level protocols, they’re likely to have
differences, for example, in terms of mes-
sage types and allowed message-exchange
patterns. Unless everyone agrees to adopt
the same standards, most interactions will
require one or both parties to perform
some adaptation to enable a successful
interoperation.

Our research looks at how to solve
these and other pressing issues that affect
the Web services development life cycle,
facilitating the scalable development and
maintenance of service-oriented applica-
tions. After years of research and devel-
opment work in this area, we developed

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

a model-driven framework, called Service Mosaic,
for Web services life-cycle management. Here, we
overview the integrated framework and its imple-
mentation architecture. (See previous papers for
details about the protocol model,3 protocol man-
agement operators,4 protocols adaptation,5 and
code skeleton generation from protocol models.6)

Basic Principles
and Building Blocks
Interoperability solutions must tackle several differ-
ent abstraction levels. Broadly speaking, we’ve iden-
tified the following service interoperability layers:

• Messaging. Services should support messaging
protocols’ connectivity, regardless of the infor-
mation’s syntax and semantics. In Web ser-
vices, the most common protocol at this level
is SOAP. A service provider might further
require (or allow) messaging to have certain
properties. For example, the interaction might
need to be reliable and secure.2

• Basic coordination. This layer is concerned with
requirements and properties related to a set of
message exchanges among two or more partners.
For instance, two or more services might need to
coordinate to provide atomicity based on the
two-phase commit protocol. WS-Transaction is
an example of specification at this level.

• Business-level interfaces and protocols. The
previous layers are concerned with transferring
messages among services, possibly endowed
with properties such as security and reliability.
Interoperation of services also requires com-
patible interfaces (that is, the set of operations
the services support) and business protocols (or
constraints on the order in which operations
should be invoked to achieve a successful inter-
action). Besides letting developers create clients
that can correctly interact with a service by
stating the allowed conversations (or set of
message exchanges), protocol specifications
have other important applications that can
simplify Web services life-cycle management,
such as providing automated support for dis-
covery, development time analysis, evolution,
exception handling, and code generation.

• Policies and nonfunctional aspects. The defini-
tion of a service might include policies (such as
privacy policies) and other nonfunctional
aspects (such as quality-of-service descriptions)
that are useful for clients to understand if they
can or want to interact with the service. There-

fore, we must consider them when looking at
Web services interoperability.

This article focuses on the business interface and
protocol layer. Incidentally, although we discuss
business protocol aspects here, we could use anal-
ogous techniques for other service aspects charac-
terized by protocols (such as basic coordination).

We believe the evolution of work in Web ser-
vices interoperability mirrors, at least conceptual-
ly, the work done in databases over the past 30
years that has led to generic abstractions and tech-
niques (such as data models, relational algebras,
theoretical foundations, and declarative query and
transformation techniques) for simplifying the
design of complex applications and enabling high-
level data manipulation. We believe that Web ser-
vice protocols require similar building blocks in
terms of simple and useful models and support for
high-level analysis, manipulation, and transfor-
mation. This philosophy inspires our work. More
precisely, we consider the following aspects:

• Conceptual protocol modeling. Users should
have at their disposal protocol models that are
easy to understand and use. The key problem
here is right-sizing the model — that is, includ-
ing aspects that are frequently needed but
avoiding overloading the model with features
that are rarely necessary, making it complex
and less likely to be used. Another important
aspect is that the protocol modeling language
should be formal enough to allow automated
analysis and manipulation.

• An algebra for analyzing and managing proto-
cols. Defining a protocol algebra and operators
to query, analyze, and manipulate protocols
allows the assessment of compatibility among
services, the understanding of similarities and
differences, and the composition and evolution
of services. Other benefits involve supporting
developers in verifying (statically or dynami-
cally) whether the service implementation is
consistent with its specifications and in veri-
fying consistency between different specifica-
tions (at different levels of abstractions) for the
same service.

• Model-driven development of protocol adap-
ters. The need for adapters in Web services
comes from the potentially high number of
interacting services, each of which can support
different business interfaces and protocols.
This creates the need for providing multiple

56 JULY • AUGUST 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Web Services

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

faces of the same service for interacting with
different partners (it’s unrealistic to hope that
all services will adopt the same standard spec-
ifications at all levels of the interaction stack).
Developing adapters using ad hoc and low-
level programming techniques is hardly
applicable, especially in dynamic environ-
ments. Hence, it’s desirable to provide a
methodology and automated support to under-
stand the differences and (partially) generate
the adaptation logic.

The next sections discuss protocol modeling,
analysis, and adaptation in more detail.

High-Level Analysis and
Management of Protocols
In previous research,4 we developed a protocol
algebra and protocol management operators tar-
geted at three main types of analysis, which we
believe are essential to Web service analysis and
management:

• compatibility, assessing if two services can
interoperate correctly;

• replaceability, verifying whether two different
protocols can support the same set of conver-
sations; and

• consistency, verifying whether a service’s
implementation can support the declared pro-
tocol definition.

Here we focus on protocol modeling and discuss
compatibility and replaceability analysis. Al-
though the formalization for verifying each of
these properties depends on the protocol model
adopted, the concepts apply to any protocol mod-
eling language.

Modeling Business Protocols
Several languages exist for describing Web service
protocols, such as the Business Process Execution
Language (WS-BPEL) or the Choreography Des-
cription Language (WS-CDL). These languages are
concerned more with implementation aspects than
specifying protocol properties. They aren’t suit-
able for automating activities such as protocol
compatibility and compliance analysis. Our frame-
work features a simple, high-level but expressive
model to represent features and abstractions that
are useful and needed in practice.3 We derived our
model’s main features from analyzing real e-com-
merce portals.

Message choreography. Protocols are modeled by
state machines. States represent the different phas-
es that a service might go through during its inter-
action with a requestor. Transitions are triggered
by messages the requestor sends to the provider or
vice versa. A message corresponds to a service
operation invocation or to its reply. Hence, each
state identifies a set of outgoing transitions and,
therefore, a set of possible messages that can be
sent or received. We chose state machines as the
base formalism because they’re a well-established
model for describing reactive components and
because of their simplicity, which we believe to be
an essential characteristic for successful models. In
addition, they’re sufficient (with few extensions)
for modeling all the behaviors frequently needed
in practice.7

Transactional implications and effects. A service
can include operations that semantically cancel the
effects of other operations; some operations, for
example, cancel a book purchase or flight reserva-
tion. In addition, for some operations to execute,
they must acquire resources for the client. For
instance, flight reservation services let customers
hold seats on a plane.

To account for modeling transactional implica-
tions and effects, we distinguish between several
types of transitions of a protocol state machine.
Effectless transitions have no effect from the client’s
perspective. Compensatable transitions denote tran-
sitions with effects we can cancel. Definite transi-
tions denote transitions with permanent effects.
Resource-locking transitions lock certain resources
for the requester for a time (useful for operations
such as seat reservations).

Time-sensitive conversations. In some cases, state
transitions can occur without an explicit invoca-
tion by requesters, typically (but not only) to
model constraints in which requesters can only
invoke an operation within a certain time window.
We refer to these transitions as implicit transi-
tions.3 A protocol might need to specify that a
purchase order message is accepted, for example,
only if it’s received within 24 hours after a quota-
tion has been made. We can specify this behavior
by tagging transitions with a time interval — that
is, the transition is fired as the interval expires,
leading the state machine to a new state from
which previously invoked operations are no
longer enabled.

Details about this extended protocol model and

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2006 57

Service Mosaic

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

information on its formal representation, based on
branching time semantics (needed to precisely
define operators and prove their properties), are
available elsewhere.4

Compatibility
Compatibility analysis is concerned with verifying
whether two services can interoperate. It’s neces-
sary for static and dynamic binding, and it also
aids in evolution because it helps verify that a
modified client can still interact as desired with a

certain service. More precisely, we identified two
compatibility classes:

• Partial compatibility. A protocol Px is partially
compatible with another protocol Py if some
executions of Px can interoperate with Py — that
is, if at least one possible conversation can take
place among a service supporting Px and one
supporting Py.

• Full compatibility. A protocol Px is fully com-
patible with another protocol Py if all the exe-
cutions of Px can interoperate with Py — that
is, Py can understand any conversation that Px
can generate.

Protocol P1 in Figure 1a can interact with pro-
tocol P2 without generating errors, and P2 can
understand any conversation that P1 can generate.
Hence, P1 is fully compatible with P2. In fact, P2
could even engage in more complex conversations
— for example, P2 can provide order cancellation
— but P1 doesn’t stress these aspects of the proto-
col. Protocol P3 in Figure 1b isn’t fully compatible
with P4. Here, it’s P3, which can send a cancel
Order message, that P4 doesn’t support. Hence, P3
isn’t fully compatible with P4. However, some con-
versations can occur between P3 and P4 — name-
ly, all the ones in which the client doesn’t cancel
the order. Hence, P3 is partially compatible with P4.

These notions of compatibility are useful in the
context of Web services. For one thing, it doesn’t
make sense for incompatible services to interact
because they can’t hold a meaningful conversa-
tion. Furthermore, if only partial compatibility
exists, the developer must be aware of this because
the service won’t be able to exploit its full capa-
bilities when interacting with the partially com-
patible ones. As an example, Figure 1c graphically
depicts the paths in protocol P5 (solid lines) that
can interact with P6 and the paths that are related
to illegal interactions (dashed lines).

This discussion shows the need for protocol
analysis operators. We’ve only mentioned the need
for two kinds of operators: Boolean operators that
take two protocols as input and test whether
they’re partially or fully compatible, and an oper-
ator that takes two protocols as input and returns
the conversations that can take place between two
services supporting these protocols. These opera-
tors leverage other basic protocol management
operators, such as intersection difference and pro-
jection. (More details and formal definitions are
available elsewhere.4)

58 JULY • AUGUST 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Web Services

Figure 1. Protocol analysis.These examples demonstrate (a) full
compatibility, (b) partial compatibility, and (c) difference analysis.We
labeled input messages with the symbol (+) and output messages
with the symbol (–).

(c)

Start

Order sent

orderGoods (–)

makePayment (–)

P5

 Order paid

orderGoods (+)

makePayment (+)

Start

Order received

P6

Order paidOrder canceled

cancelOrder(–)

Start

Order sent

orderGoods (–)

makePayment (–)

P1

Order paid

orderGoods (+)

makePayment (+)

Start

Order made

P2

Order paid Order canceled

cancelOrder(+)

(a)

Order canceled

Start

Order sent

orderGoods (–)

makePayment (–)

P3

Order paid

orderGoods (+)

makePayment (+)

Start

Order received

P4

Order paid

cancelOrder(–)

(b)

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

Replaceability
Replaceability analysis identifies whether two pro-
tocols are equivalent in terms of conversations that
they can support, in general and when interacting
with a certain client. Such an analysis also
involves finding the set of conversations that both
services can support if they aren’t equivalent. For
instance, we can use this to determine whether a
new version of a service (protocol) can support the
same conversations as the previous one or whether
a newly defined service can support the conversa-
tions a given standard specification mandates. We
identified several replaceability classes (see Figure
2), which provide basic building blocks for ana-
lyzing the commonalities and differences between
service protocols.

Protocol equivalence occurs when two business
protocols Px and Py can support the same set of
conversations. Any conversation that doesn’t result
in errors — that is, it’s legal — according to Px will
also be legal according to Py and vice versa. We can
interchangeably use the two protocols in any con-
text, and the change is transparent to clients. Pro-
tocols P7 and P8 in Figure 2a are equivalent.

Protocol subsumption occurs when protocol Py
is subsumed by another protocol Px because Px sup-
ports at least all the conversations that Py supports.
Hence, we can transparently use protocol Px instead
of Py, but the opposite isn’t necessarily true. Proto-
col P8 in Figure 2b subsumes protocol P9.

The previous definitions discussed replaceabil-
ity in general. However, it’s important to under-
stand whether we can use a service to replace
another when it’s interacting with a client — that
is, to determine protocol equivalence and sub-
sumption, with respect to a client protocol. Let’s
assume that we’ve developed a service to interact
with another service our supplier offers. When we
upgrade our service, we need to know if we can
still have conversations with our supplier. This
leads to a weaker definition of replaceability: a
protocol Px can replace another protocol Py with
respect to a client protocol Pc if every legal con-
versation between Py and Pc is also a legal conver-
sation between Px and Pc. In this case, Px can
replace Py to interact with Pc. For instance, proto-
col P12 in Figure 2c can replace P11 when interact-
ing with Pc, although the two aren’t equivalent, but
P12 doesn’t subsume P11 (and therefore can’t replace
P11 for arbitrary clients).

The last class addresses replaceability with
respect to an interaction role. Let’s assume that we
have a service supporting protocol Px that, among

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2006 59

Service Mosaic

Figure 2. Protocol analysis. These examples demonstrate
(a) equivalence, (b) subsumption, and (c) replaceability with respect
to a client. We labeled input messages with the symbol (+) and
output messages with the symbol (–).

orderGoods (+)

makePayment (+)

Start

Order received

P8

Order paid
(a)

Start

Order sent

orderGoods (+)

makePayment (+)

P7

Order paid

(b)

orderGoods (+)

makePayment (+)

Start

Order made

P9

Order paid Order canceled

cancelOrder(+)

orderGoods (+)

makePayment (+)

Start

Order sent

P10

Order paid

(c)

Start

Order made

orderGoods (+)

makePayment (+)

makePayment (+)

P11

Order paid Order canceled

cancelOrder(+)

Start

Order sent

orderGoods (+)

P12

Order paid

orderGoods (–)

makePayment (–)

Start

Order sent

Pc

Order paid

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

other conversations, can also support some of the
conversations mandated by a certain standard
consortium and defined by a protocol called PR. In
this case, we might need to know if a new version
of a protocol — say Py — can support the same set
of standard conversations. That is, can Py replace
Px when Px carries on conversations defined as part
of PR. We say that a protocol Py can replace anoth-
er protocol Px with respect to a role PR if Py
behaves as Px when Px behaves as PR. This replace-
ability class lets us identify executions of a proto-
col Px that protocol Py can replace, even when Px
and Py aren’t comparable with respect to any of the
previous replaceability classes. When we say that a
protocol Py behaves as a protocol Px , we mean that
not only can Py support all conversations that Px
can, but also that Py won’t support all conversa-
tions that Px doesn’t support (again, with respect
to an interaction role). This means that subsump-
tion doesn’t imply equivalence with respect to an
interaction role.

As for compatibility, this discussion emphasizes
the need for operators to analyze equivalence, sub-
sumption, and different notions of replaceability.
The need also exists for understanding, when two
protocols aren’t equivalent, which conversations
both can or can’t handle. This leads to providing
operators to determine intersection and difference
among protocols, among others, to identify which
conversations can and can’t be supported when we
use a service in place of another. (More details
appear elsewhere.4)

Model-Driven Development
of Protocol Adapters
Whenever we have services that aren’t fully com-
patible or equivalent, we might have to implement
some modifications so that interoperability is pos-
sible. In many cases, we can achieve compatibility
and replaceability by placing an adapter in front
of the service that mediates for the differences.

However, using adapters only shifts the prob-
lem from implementing many variants of a ser-
vice to developing many adapters. Hence, it’s
beneficial to identify a way to support adapter
development and management, possibly in a
semiautomated fashion. We take the view that,
although concrete adapter specifications are
application specific in many cases, it’s possible
to generically capture the type of differences
among protocols and the way to resolve them
into what we call mismatch patterns. Indeed,
we’ve analyzed interfaces and protocols to iden-

tify the most typical differences, and for these,
we’ve specified the corresponding mismatch pat-
terns.5 This is akin to detecting structural and
semantic differences in data mappings.7 Each
mismatch pattern includes an adapter template
to tackle the mismatch, as well as a sample
usage. The template is useful as a guideline for
developers and as input to a tool that automati-
cally generates the adapter code.

We distinguish between operation- and pro-
tocol-level mismatches. Operation-level mis-
matches characterize heterogeneities related to
operation definitions. Examples include differ-
ences that occur when two services S and SR
have operations with the same functionality but
differ in operation name, number, order, or type
of I/O parameters. Protocol-level mismatches
characterize heterogeneities related to message
choreography as well as temporal and transaction
properties. Examples include differences that
occur when two services expect a messages in a
different order, when one service sends messages
that the other doesn’t accept, when one service
requires a single message to achieve certain func-
tionality whereas the other requires several, and
so on. (A comprehensive discussion on this topic
appears elsewhere.5)

Essentially, an adapter maps interactions with
protocol P (with which the client is designed to
interact) into interactions with protocol PR (sup-
ported by the provider). This requires performing
activities such as receiving messages, storing mes-
sages, transforming message data, and invoking
service operations. We can model these tasks nat-
urally using process-centric service composition
languages such as BPEL. Our approach leverages
patterns to assist in automatically generating
BPEL process skeletons that map interactions
according to protocol P into interactions accord-
ing to protocol PR.

Table 1 shows an example of the message-
ordering mismatch pattern. In this case, the same
message is required in different orders by inter-
acting services. The adapter template provides a
solution for resolving the mismatch and corre-
sponding BPEL activities. The sample usage in Fig-
ure 3 shows how to apply this mismatch pattern in
a supply-chain management system. In this
replaceability scenario (a client replaces service S
with SR), the service SR expects the shipping-pref-
erences message in a different order. The adapter
then saves the message and sends it when the pro-
tocol of service SR requires it.

60 JULY • AUGUST 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Web Services

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

We choose a process-based notation because
it’s well suited to model business logic. Also, it’s
easy to derive a service’s protocol specifications
when we specify its business logic as a business
process.3 Adapter processes are annotated with
additional high-level directives to specify adapta-
tion abstractions. In particular, the additional
annotations can include XQuery functions to spec-
ify message transformations that are commonly
needed in adapters as well as directives to help
developers understand how to instantiate certain
elements of the adapter template. A process-based
notation is also appropriate for composing com-
plex adapters from primitive adapter templates.
(Due to space limitations, we don’t discuss devel-
oping protocol adapters in this article.)

Service Mosaic
We’ve implemented our framework in a prototype
platform, called Service Mosaic, as a computer-
aided software engineering (CASE) tool set for
modeling, analyzing, and managing service mod-
els including business protocols, orchestration, and
adapters. (More details regarding the CASE tool set
are available on the Service Mosaic project Web
site, http://servicemosaic.isima.fr/.) We developed

the Service Mosaic platform using Java and Java
2 Enterprise Edition (J2EE) technologies and on top
of the Eclipse platform. Figure 4 shows Service
Mosaic’s layered architecture. The platform’s com-
ponents are as follows:

• Model representation and manipulation com-
ponents support representing, storing, and
manipulating service descriptions and proto-
cols. We provide basic manipulation operations
of model elements, such as protocols, as core
libraries that shield higher-level components
from the details of their physical representa-
tions (XML, databases, and so on).

• Analysis and management components include
operators for protocol compatibility and
replaceability analysis,4 a code generator that
produces BPEL skeletons from business proto-
col specifications,3 and a code generator that
produces BPEL templates for implementing the
adapters.5 We also provide a service-based
interface for these components, and as such,
they can be invoked by our GUI (in the devel-
opment environment) or by external applica-
tions via SOAP clients.

• The development environment provides visual

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2006 61

Service Mosaic

Table 1. An example of the message-ordering mismatch pattern.

Mismatch Type Message Ordering
Template parameters Protocols P (of service S) and PR (of service SR), message m to be reordered
Adapter template Perform activities as prescribed by P for parts that don’t need adaptation (BPEL receive, invoke, reply activities)

Receive message m according to protocol P (BPEL receive activity)
Store m in the adapter (BPEL assign activity)
Send m to SR when it is expected (BPEL invoke activity)

Figure 3. Mismatch pattern sample usage.The sample usage for the example of the message-ordering
mismatch pattern in Table 1.

Receive sendShippingPreferences <ShippingPrefIn>

Assign ShippingPref ← ShippingPrefIn

Invoke sendShippingPreferences <ShippingPref>

Provider SR

sendShippingPreferencesIn

sendShippingPreferencesIn

Other
messages

Client

Other
messages Other activities (the operations issueInvoice and

makePayment in this example)

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

exploration for modifying, analyzing, and
managing model elements. It offers state-
machines and state-chart graphical editors for
business protocols, trust negotiation protocols,
and orchestration models, for example.

We’ve validated Service Mosaic’s usefulness in
several applications. We applied protocol opera-
tors in the context of some supply-chain scenar-
ios for protocol compatibility, replaceability, and
protocol evolution. We also used mismatch pat-
terns to identify mismatches of ArcWeb (www.
esri.com/software/arcwebservices/) and MapPoint
(www.microsoft.com/mappoint/default.mspx) rout-
ing services, which provide the same functionali-
ties using different interfaces (operations and
messages). Generating adapters by instantiating
adapter templates associated to each mismatch
pattern remarkably reduces the time and effort
needed to manually derive such adapters.

In terms of managing the Web service develop-
ment life cycle, technology is still in the early

stages. There has been little concern so far regard-
ing methodologies and tools for conceptual
modeling and development of services. Service
development tools (such as BPEL4WJ and the Ora-
cle BPEL Process Engine) that support emerging
standards and protocols have started to appear,
but these efforts and tools are mainly concerned
with implementation aspects. We argue that the
effective use and widespread adoption of service

technologies and standards requires high-level
frameworks and methodologies for supporting
automated development and interoperability. Prior
research proposed a methodology for defining
processes based on composing protocols.8 The
paper also proposed notions of refinement among
protocols and of commitments. Another work
investigated compliance verification with respect
to a commitment protocol.9 These approaches dif-
fer from the one we propose here. We don’t aim to
understand if two protocols can provide the same
commitment or to verify whether a given proto-
col execution leads to a commitment violation.
Our notions of compatibility and replaceability (as
well as our analysis and operators) focus on
understanding whether two services can syntac-
tically interact, and if so, how. They aim at under-
standing if the protocols can exchange messages
without resulting in runtime errors and which
conversations are (or aren’t) possible. This is a pre-
requisite to any other kind of semantic or con-
ceptual similarity analysis among services.

Our current work focuses on extending analy-
sis and management techniques for timed proto-
cols, and we plan to concentrate on transactional
aspects. We’re also investigating business protocol
discovery techniques to bring the benefits of pro-
tocol-based interactions to services that don’t
explicitly model business protocols and to inter-
actions that involve groups of services. Finally, we
plan to explore techniques for cataloging and ana-
lyzing previous adapters to improve the process of
developing new adapters.

62 JULY • AUGUST 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Web Services

Figure 4. The Service Mosaic platform’s layered architecture. It includes sets of classes for protocol
definition, protocol analysis, and protocol data management.

Analysis and management components
Development environment

Model representation, storage, and manipulation components

Calls from external
clients via SOAP

interface

Analysis and management interface

Trust negotiation protocol editor

Business protocol editor

Mismatch-pattern editor

Composition editor

Protocol analysis and
manipulation operators

Code generator from protocol model

Adaptor generator

Repositories

Mismatch-patterns
templates

Service descriptions
and models

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

References
1. M.P. Papazoglou and D. Georgakopoulos, “Special Issue on

Service-Oriented Computing,” Comm. ACM, vol. 46, no.
10, 2003.

2. N. Leavitt, “Are Web Services Finally Ready to Deliver?”
Computer, vol. 37, no. 11, 2004, pp. 14–18.

3. B. Benatallah, F. Casati, and F. Toumani, “Web Service Con-
versation Modeling: A Cornerstone for e-Business Automa-
tion,” IEEE Internet Computing, vol. 8, no. 1, 2004, pp.
46–54.

4. B. Benatallah, F. Casati, and F. Toumani, “Analysis and
Management of Web Service Protocols,” Conceptual Mod-
eling: ER 2004, Proc. 23rd Int’l Conf. Conceptual Model-
ing, LNCS 3288, Springer-Verlag, pp. 524–541.

5. B. Benatallah et al., “Developing Adapters for Web Services
Integration,” Proc. 17th Conf. Advanced Information Sys-
tems Eng. (CAiSE), LNCS 3520, Springer-Verlag, 2005, pp.
415–429.

6. K. Baina et al., “Model-Driven Web Service Development,”
Proc. 16th Conf. Advanced Information Systems Eng.
(CAiSE), LNCS 3084, Springer-Verlag, 2004, pp. 290–306.

7. E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching” VLDB J., vol. 10, no. 4, 2001,
pp. 334–350.

8. M.P. Singh et al., “Protocols for Processes: Programming
in the Large for Open Systems,” Oopsla Companion, ACM
Press, 2004, pp. 120–123.

9. M. Venkatraman and M.P. Singh, “Verifying Compliance
with Commitment Protocols,” Autonomous Agents and
Multi-Agent Systems, vol. 2, no. 3, 1999, pp. 217–236.

Boualem Benatallah is an associate professor at the Univer-
sity of New South Wales, Australia. His latest work focus-
es on service-oriented computing and large-scale data
sharing. Benatallah has a PhD in computer science from
the University of Grenoble, France. He is a member of the
IEEE and ACM. Contact him at boualem@cse.unsw.
edu.au.

Fabio Casati is a senior researcher at Hewlett-Packard Labs,
Palo Alto. His research interests include business process-
es, Web services, business-aware application management,
and middleware intelligence. Casati has a PhD in comput-
er science from Politecnico di Milano. Contact him at fabio.
casati@hp.com.

Farouk Toumani is a senior lecturer at the School of Engineer-
ing in Computer Science, Modeling, and Applications, Uni-
versity Blaise Pascal, France. His research interests include
Web services, the Semantic Web, and knowledge represen-
tation for databases. Toumani has a PhD in computer sci-
ence from the National Institute of Applied Sciences, Lyon,
France. Contact him at ftoumani@isima.fr.

Julien Ponge is a PhD student at the University Blaise Pascal,
France, and under cotutelle agreements with the Universi-
ty of New South Wales, Australia. His research interest is
in applications-integration issues in Web services. Ponge
has a masters by research in computer science from the
University Blaise Pascal, France. Contact him at
ponge@isima.fr.

Hamid Reza Motahari Nezhad is a PhD student in computer sci-
ence at the University of New South Wales, Australia, and
under an agreement with National Information and Com-
munications Technology of Australia (NICTA). His research
interests are in Web service interoperability and analysis,
and management of Web services business protocols.
Nezhad has an MS in computer science from the Amirkabir
University of Technology, Tehran, Iran. He is a student
member of the IEEE and the Australian Computer Society.
Contact him at hamidm@cse.unsw.edu.au.

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2006 63

Service Mosaic

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

